Kliknij tutaj --> 🦏 niech a 2 b 3
Rozwiązanie zadania z matematyki: Niech a=-2 i b=3. Wartość wyrażenia a^b-b^a jest równa {A) frac{73}{9}}{B) frac{71}{9}}{C) -frac{73}{9}}{D) -frac{71}{9}}, 2 literki, 1881450
2. Less Competition. Niche marketplaces give you the opportunity to target your service offerings to the right audience—without having to compete with other non-related products and services. As the marketplace only promotes services you offer, your conversion rates are more likely to improve. This ultimately results in a boost in revenue. 3.
Analiza Matematyczna Przykłady: Ciągi liczbowe Opracowanie: dr hab. inż. Agnieszka Jurlewicz, prof. PWr Przykłady 1.1
Please refer to fib b. As we see, the square has been divided into four parts (1,2,3,4) as seen in fig b. The next step is to calculate the area of the square having a length (a+b). As per fig b, to calculate the area of the square: we need to calculate the areas of parts 1,2,3,4, and sum up. Calculation: Please refer to fig c.
3. Be Authentically You. I would say look to leverage your story, background or personal characteristics. As corny as it sounds, ultimately you are the only that is you in the world. That is an asset.
Site De Rencontre Paris 100 Gratuit. GłównaSzkołaMaturaStudiaProgramyInneLogowanieNiech \(a=-2\), \(b=3\). Wartość wyrażenia \(a^b-b^a\) jest równa A.\( \frac{73}{9} \) B.\( \frac{71}{9} \) C.\( -\frac{73}{9} \) D.\( -\frac{71}{9} \) CStrony z tym zadaniemMatura 2017 sierpieńSąsiednie zadaniaZadanie 2419Zadanie 2420Zadanie 2423 (tu jesteś)Zadanie 2424Zadanie 2425© 2010-2020 Matemaks Michał Budzyński | Na górę strony | Kontakt | Regulamin | Polityka prywatności | Cennik | Strona główna
Niech a = 3 + Pierwiastek 7 , b = 4 - 2 Pierwiastek 7. Oblicz a * b i a - b. Pilne :)!
Odpowiedzi EKSPERTHerhor odpowiedział(a) o 20:30 a+b = 3x-y +x-1=4x-y-1a+b-c=(a+b)-c= (4x-y-1)+3x= x-2y-1a-b-c= 3x-y-x+1+3x= 5x +1a-(b-c)= 3x-y -x+1-3x= -x-y+1 0 0 Aniooo xd odpowiedział(a) o 20:39: dziękuje Uważasz, że znasz lepszą odpowiedź? lub
Opublikowano na ten temat Matematyka from Guest
Z talii 52 kart losowo wybieramy 5. Oblicz prawdopodobieństwo, że wszystkie karty będą czarne. Zobacz rozwiązanie >> Jakie jest prawdopodobieństwo wylosowania liczby podzielnej przez 4 ze zbioru liczb \(\{1,2,3,4,5,6,7,8,9,10,11\}\). Zobacz rozwiązanie >> Obliczyć prawdopodobieństwo, że rzucając symetryczną kostką do gry otrzymamy parzystą liczbę oczek. Zobacz rozwiązanie >> Obliczyć prawdopodobieństwo, że rzucając dwukrotnie symetryczną kostką do gry otrzymamy dwa razy liczbę 6. Zobacz rozwiązanie >> W teleturnieju gracz ma wybór między 3 bramkami. W jednej z bramek jest samochód, w pozostałych dwóch są koty w worku. Prowadzący teleturniej wie, w której bramce jest samochód. Gracz wskazuje jedną z bramek, wtedy prowadzący otwiera jedną z pozostałych dwóch bramek, tą w której jest kot w worku. Prowadzący pyta gracza, czy chce zmienić bramkę. Gracz wygrywa, gdy wskaże bramkę, która kryje samochód. Załóżmy, że gracz na początku gry wybrał bramkę nr 1, a prowadzący otworzył bramkę nr 3 z kotem w worku. Czy graczowi opłaca się zmienić wybór i wskazać bramkę nr 2? Uzasadnij odpowiedź obliczając odpowiednie prawdopodobieństwa. Zobacz rozwiązanie >> Rzucamy sześcienną kostką do gry. Oblicz prawdopodobieństwo warunkowe otrzymania liczby oczek większej od 3 pod warunkiem, że liczba oczek jest parzysta. Zobacz rozwiązanie >> W urnie jest 11 kul białych, 10 kul czarnych i 9 kul niebieskich. Korzystając z klasycznej definicji prawdopodobieństwa oblicz:(a) prawdopodobieństwo wylosowania kuli białej(b) prawdopodobieństwo wylosowania kuli czarnej(c) prawdopodobieństwo wylosowania kuli niebieskiej lub czarnej Zobacz rozwiązanie >> Mamy dwie kostki go gry, z których jedna jest idealnie symetryczna i wyważona, tak, że wszystkie wyniki są jednakowo prawdopodobne. Druga kostka jest krzywa, tak, że prawdopodobieństwo wyrzucenia na niej 6 wynosi \(\frac{1}{5}\). Losowo wybrano jedną z dwóch kostek i wykonano nią dwa rzuty otrzymując dwie szóstki. Jakie jest prawdopodobieństwo, że rzucano krzywą kostką? Rozwiązanie widoczne po rejestracji Pewna rodzina ma dwójkę dzieci. Oblicz prawdopodobieństwo, że wszystkie dzieci są chłopcami pod warunkiem, że przynajmniej jedno dziecko jest chłopcem. Rozwiązanie widoczne po rejestracji W urnie jest 9 kul: 4 białe i 5 czarnych. Wybieramy losowo bez zwracania 2 kule. Wyznacz prawdopodobieństwo warunkowe tego, że druga wylosowana kula będzie czarna pod warunkiem, że pierwsza wylosowana kula była biała Rozwiązanie widoczne po rejestracji W urnie jest 9 kul: 4 białe i 5 czarnych. Wybieramy losowo 2 kule. Wyznacz prawdopodobieństwo, że obie kule będą białe, gdy:(a) losujemy kule bez zwracania(b) losujemy kule ze zwracaniem (losujemy pierwszą, zapisujemy jaki ma kolor i wrzucamy do urny) Rozwiązanie widoczne po rejestracji Mamy zbiór \(n\in\mathbb{N}\) elementów, wśród których \(m\leq n\) ma cechę C. Wybieramy losowo 2 elementy. Wyznacz prawdopodobieństwo, że oba wylosowane elementy będą miały cechę C, gdy:(a) losujemy elementy bez zwracania(b) losujemy elementy ze zwracaniem (losujemy pierwszy, zapisujemy czy ma cechę C i wrzucamy do urny) Rozwiązanie widoczne po rejestracji Przestrzeń \(\Omega\) zawiera 6 zdarzeń elementarnych \(\{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5,\omega_6\}\). Niech \(A=\{\omega_1,\omega_3,\omega_5\}\) i \(B=\{\omega_2,\omega_3,\omega_6\}\). Wyznaczyć zdarzenia:(a) \(A\cup B\)(b) \(A\cap B\)(c) \(A\setminus B\)(d) \(B\setminus A\)(e) \(A^c\)oraz oblicz prawdopodobieństwa klasyczne wszystkich powyższych zdarzeń. Rozwiązanie widoczne po rejestracji Z talii 52 kart losowo wybieramy 5. Oblicz prawdopodobieństwo, że wśród kart będzie dokładnie jedna para. Rozwiązanie widoczne po rejestracji Umieszczamy 4 różne kule w 8 różnych urnach. Jakie jest prawdopodobieństwo, że:(a) każda kula będzie w innej urnie(b) dwie kule będą w tej samej urnie Rozwiązanie widoczne po rejestracji Umieszczamy losowo 4 nierozróżnialne kule w 8 różnych urnach. Jakie jest prawdopodobieństwo, że:(a) każda kula będzie w innej urnie(b) dwie kule będą w tej samej urnie Rozwiązanie widoczne po rejestracji Umieszczamy n ponumerowanych kul w n ponumerowanych urnach. Jakie jest prawdopodobieństwo, że dokładnie jedna urna jest pusta. Rozwiązanie widoczne po rejestracji Pewien student zdaje egzaminy z fizyki i matematyki. Prawdopodobieństwo, że zda fizykę wynosi 0,4, że zda oba egzaminy 0,2, a że zda co najmniej jeden egzamin wynosi 0,7. Oblicz prawdopodobieństwo, że student zda egzamin z matematyki. Rozwiązanie widoczne po rejestracji Statek (Titanic) posiada 2 przedziały wypornościowe duże i 3 mniejsze. Statek nie utonie (utrzyma się na wodzie) jeśli szczelny będzie co najmniej jeden duży i co najmniej 2 małe przedziały wypornościowe. Niech \(D_1,D_2\) oznaczają, że duże przedziały wypornościowe są szczelne, a \(M_1,M_2,M_3\), że szczelne są małe przedziały wypornościowe. Za pomocą zdarzeń \(D_i,\,\,(i=1,2)\) i \(M_j,\,\,(j=1,2,3)\) zapisz zdarzenie, że statek nie utonie (utrzymuje się na wodzie). Rozwiązanie widoczne po rejestracji Fabryka produkuje 100 samochodów miesięcznie. Niech \(W_i,\,\,i=1,2,...,100\) oznacza zdarzenie polegające na tym, że i-ty wyprodukowany w miesiącu samochód jest wadliwy. Za pomocą zdarzeń \(A_i\) zapisz następujące zdarzenia:(a) żadne auto nie jest wadliwe (wszystkie są sprawne)(b) co najmniej jeden samochód jest wadliwy(c) wszystkie samochody są wadliwe Rozwiązanie widoczne po rejestracji Wykazać, że:(a) \(P(A\setminus B)=P(A)-P(A\cap B)\)(b) \(P(A\cup B)=P(A)+P(B)-P(A\cap B)\)(c) \(P(\emptyset)=0\)(d) \(P(A^c)=1-P(A)\)(e) Jeżeli \(A\subset B\), to \(P(A)\leq P(B)\)(f) \(P(A)\leq 1\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A\setminus B)=\frac{1}{4}\) oraz \(P(A)=\frac{1}{2}\) i \(P(B)=\frac{1}{2}\) oblicz prawdopodobieństwa:(a) \(P(A\cap B)\)(b) \(P(A\cup B)\)(c) \(P(A^c)\) i \(P(B^c)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A\setminus B)=\frac{1}{4}\) oraz \(P(A)=\frac{1}{2}\) i \(A\cup B\) jest zdarzeniem pewnym oblicz prawdopodobieństwa:(a) \(P(A\cap B)\)(b) \(P(B)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A\setminus B)=\frac{1}{4}\) i \(P(A\cup B)=\frac{1}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwa:(b) \(P(B)\)(a) \(P(A\cap B)\)(c) \(P(A)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A)=\frac{1}{4}\) i \(P(A\cup B)=\frac{3}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwa:(b) \(P(B)\)(a) \(P(A\cap B)\)(c) \(P(A\setminus B)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A)=3P(A^c)\) i \(P(A\cup B)=\frac{3}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwa:(a) \(P(A)\)(b) \(P(B)\)(c) \(P(A\cap B)\) Rozwiązanie widoczne po rejestracji Wiedząc, że \(P(A)=5P(A^c)\), \(P(B^c)=\frac{1}{2}\) i \(P(A\cup B)=\frac{3}{4}\) oraz że zdarzenia A i B są niezależne, oblicz prawdopodobieństwo:\(P(A\cap B)\) Rozwiązanie widoczne po rejestracji Rozpatrzmy rzut symetryczną, sześcienną kostką. Sprawdź, czy zdarzenia A i B są niezależne:(a) A - wyrzucenie parzystej liczby oczek, B - wyrzucenie liczby oczek większej od 2(b) A - wyrzucenie nieparzystej liczby oczek, B - wyrzucenie liczby oczek nie większej niż 2(c) A - wyrzucenie parzystej liczby oczek, B - wyrzucenie nieparzystej liczby oczek Rozwiązanie widoczne po rejestracji Rozpatrzmy rzut 2 symetrycznymi, sześciennymi kostkami. Sprawdź, czy zdarzenia A i B są niezależne:(a) A - suma oczek wynosi 4, B - różnica oczek wynosi 2(b) A - iloczyn oczek wynosi 2, B - iloraz oczek wynosi 2 Rozwiązanie widoczne po rejestracji Wśród wszystkich rodzin, które mają n dzieci wybieramy losowo jedną rodzinę. Niech A oznacza zdarzenie, że w losowo wybranej rodzinie jest co najwyżej jedna dziewczynka, a B to zdarzenie polegające na tym, że w rodzinie są chłopcy i dziewczynki. Sprawdź dla jakich wartości n, zdarzenia A i B są niezależne. Rozwiązanie widoczne po rejestracji Wykaż, że jeżeli zdarzenia A i B są niezależne to zdarzenia:(a) \(A^c\) i \(B\)(b) \(A^c\) i \(B^c\)również są niezależne. Rozwiązanie widoczne po rejestracji Niech \((A_k)_{k=1}^\infty\) będzie ciągiem parami rozłącznych zdarzeń losowych takich, że \(P(A_{k+1})=\frac{2}{3}P(A_k)\) dla \(k=1,2,3,...\) oraz \(\Omega=\bigcup\limits_{k=1}^{\infty}A_k\). Oblicz \(P(A_1)\). Rozwiązanie widoczne po rejestracji
niech a 2 b 3